Advanced Modeling of Oxide Defects

نویسندگان

  • Wolfgang Goes
  • Franz Schanovsky
  • Tibor Grasser
چکیده

During the last couple of years, there is growing experimental evidence which confirms charge trapping as the recoverable component of BTI. The trapping process is believed to be a non-radiative multiphonon (NMP) process, which is also encountered in numerous physically related problems. Therefore, the underlying NMP theory is frequently found as an important ingredient in the youngest BTI reliability models. While several different descriptions of the NMP transitions are available in literature, most of them are not suitable for the application to device simulation. In this chapter, we will present a rigorous derivation that starts out from the microscopic Franck-Condon theory and yields generalized trapping rates accounting for all possible NMP transitions with the conduction and the valence band in the substrate as well as in the poly-gate. Most importantly, this derivation considers the more general quadratic electron-phonon coupling contrary to several previous charge trapping models. However, the pure NMP transitions do not suffice to describe the charge trapping behavior seen in time dependent defect spectroscopy (TDDS). Inspired by these measurements, we introduced metastable states, which have a strong impact on the trapping dynamics of the investigated defect. It is found that these states provide an explanation for plenty of experimental features observed in TDDS measurements. In particular, they can explain the behavior of fixed as well as switching oxide hole traps, both regularly observed in TDDS measurements. abstract on a separate page so as not to break the formating of the chapteron a separate page so as not to break the formating of the chapter Advanced Modeling of Oxide Defects Wolfgang Goes, Franz Schanovsky, and Tibor Grasser

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Total Ionizing Dose Effects in Advanced Complementary Metal-Oxide-Semiconductor Technologies by

i ABSTRACT The increased use of commercial complementary metal-oxide-semiconductor (CMOS) technologies in harsh radiation environments has resulted in a new approach to radiation effects mitigation. This approach utilizes simulation to support the design of integrated circuits (ICs) to meet targeted tolerance specifications. Modeling the deleterious impact of ionizing radiation on ICs fabricate...

متن کامل

The Effect of Process Parameters on the Apparent Defects of Tape-Cast SOFC Half-Cell

Using flawless components are important for a proper material selection and best working conditions to achieve the best performance of solid oxide fuel cells (SOFCs). Tape casting is the most used process for the fabrication of SOFC parts, especially anode and electrolyte due to its advantages regarding the other processes. In this study, the effect of slurry composition and milling time were s...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

A comprehensive review on modeling of nanocomposite materials and structures

This work presents a historical review of the researches procured by various scientists and engineers dealing with the nanocomposite materials and continuous systems manufactured from such materials. Nanocomposites are advanced type of well-known composite materials which have been reinforced with nanosize reinforcing fibers and/or particles. Such materials can be better suit for the industrial...

متن کامل

Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects

Objective(s):Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs) seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013